Annex C (informative) Compatibility [diff]

C.1 C++ and ISO C [diff.iso]

C.1.7 [dcl.decl]: declarators [diff.decl]

Affected subclause: [dcl.fct]
Change: In C++, a function declared with an empty parameter list takes no arguments.
In C, an empty parameter list means that the number and type of the function arguments are unknown.
Example:
int f();            // means   int f(void) in C++
                    // int f( unknown ) in C

Rationale: This is to avoid erroneous function calls (i.e., function calls with the wrong number or type of arguments).
Effect on original feature: Change to semantics of well-defined feature.
This feature was marked as “obsolescent” in C.

Difficulty of converting: Syntactic transformation.
The function declarations using C incomplete declaration style must be completed to become full prototype declarations.
A program may need to be updated further if different calls to the same (non-prototype) function have different numbers of arguments or if the type of corresponding arguments differed.

How widely used: Common.
Affected subclause: [dcl.fct] [see [expr.sizeof]]
Change: In C++, types may not be defined in return or parameter types.
In C, these type definitions are allowed.
Example:
void f( struct S { int a; } arg ) {}    // valid C, invalid C++
enum E { A, B, C } f() {}               // valid C, invalid C++

Rationale: When comparing types in different translation units, C++ relies on name equivalence when C relies on structural equivalence.
Regarding parameter types: since the type defined in a parameter list would be in the scope of the function, the only legal calls in C++ would be from within the function itself.

Effect on original feature: Deletion of semantically well-defined feature.

Difficulty of converting: Semantic transformation.
The type definitions must be moved to file scope, or in header files.

How widely used: Seldom.
This style of type definition is seen as poor coding style.
Affected subclause: [dcl.fct.def]
Change: In C++, the syntax for function definition excludes the “old-style” C function.
In C, “old-style” syntax is allowed, but deprecated as “obsolescent”.

Rationale: Prototypes are essential to type safety.

Effect on original feature: Deletion of semantically well-defined feature.

Difficulty of converting: Syntactic transformation.

How widely used: Common in old programs, but already known to be obsolescent.
Affected subclause: [dcl.init.aggr]
Change: In C++, designated initialization support is restricted compared to the corresponding functionality in C.
In C++, designators for non-static data members must be specified in declaration order, designators for array elements and nested designators are not supported, and designated and non-designated initializers cannot be mixed in the same initializer list.
Example:
struct A { int x, y; };
struct B { struct A a; };
struct A a = {.y = 1, .x = 2};  // valid C, invalid C++
int arr[3] = {[1] = 5};         // valid C, invalid C++
struct B b = {.a.x = 0};        // valid C, invalid C++
struct A c = {.x = 1, 2};       // valid C, invalid C++

Rationale: In C++, members are destroyed in reverse construction order and the elements of an initializer list are evaluated in lexical order, so field initializers must be specified in order.
Array designators conflict with lambda-expression syntax.
Nested designators are seldom used.

Effect on original feature: Deletion of feature that is incompatible with C++.

Difficulty of converting: Syntactic transformation.

How widely used: Out-of-order initializers are common.
The other features are seldom used.
Affected subclause: [dcl.init.string]
Change: In C++, when initializing an array of character with a string, the number of characters in the string (including the terminating '\0') must not exceed the number of elements in the array.
In C, an array can be initialized with a string even if the array is not large enough to contain the string-terminating '\0'.
Example:
char array[4] = "abcd";         // valid C, invalid C++

Rationale: When these non-terminated arrays are manipulated by standard string functions, there is potential for major catastrophe.

Effect on original feature: Deletion of semantically well-defined feature.

Difficulty of converting: Semantic transformation.
The arrays must be declared one element bigger to contain the string terminating '\0'.

How widely used: Seldom.
This style of array initialization is seen as poor coding style.