namespace std {
template<class T> struct default_delete {
constexpr default_delete() noexcept = default;
template<class U> default_delete(const default_delete<U>&) noexcept;
void operator()(T*) const;
};
} template<class U> default_delete(const default_delete<U>& other) noexcept;
void operator()(T* ptr) const;
namespace std {
template<class T> struct default_delete<T[]> {
constexpr default_delete() noexcept = default;
template<class U> default_delete(const default_delete<U[]>&) noexcept;
template<class U> void operator()(U* ptr) const;
};
}template<class U> default_delete(const default_delete<U[]>& other) noexcept;
template<class U> void operator()(U* ptr) const;
namespace std {
template<class T, class D = default_delete<T>> class unique_ptr {
public:
using pointer = see below;
using element_type = T;
using deleter_type = D;
// [unique.ptr.single.ctor], constructors
constexpr unique_ptr() noexcept;
explicit unique_ptr(pointer p) noexcept;
unique_ptr(pointer p, see below d1) noexcept;
unique_ptr(pointer p, see below d2) noexcept;
unique_ptr(unique_ptr&& u) noexcept;
constexpr unique_ptr(nullptr_t) noexcept;
template<class U, class E>
unique_ptr(unique_ptr<U, E>&& u) noexcept;
// [unique.ptr.single.dtor], destructor
~unique_ptr();
// [unique.ptr.single.asgn], assignment
unique_ptr& operator=(unique_ptr&& u) noexcept;
template<class U, class E>
unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;
unique_ptr& operator=(nullptr_t) noexcept;
// [unique.ptr.single.observers], observers
add_lvalue_reference_t<T> operator*() const;
pointer operator->() const noexcept;
pointer get() const noexcept;
deleter_type& get_deleter() noexcept;
const deleter_type& get_deleter() const noexcept;
explicit operator bool() const noexcept;
// [unique.ptr.single.modifiers], modifiers
pointer release() noexcept;
void reset(pointer p = pointer()) noexcept;
void swap(unique_ptr& u) noexcept;
// disable copy from lvalue
unique_ptr(const unique_ptr&) = delete;
unique_ptr& operator=(const unique_ptr&) = delete;
};
}constexpr unique_ptr() noexcept;
constexpr unique_ptr(nullptr_t) noexcept;
explicit unique_ptr(pointer p) noexcept;
unique_ptr(pointer p, see below d1) noexcept;
unique_ptr(pointer p, see below d2) noexcept;
unique_ptr(pointer p, A& d) noexcept; unique_ptr(pointer p, A&& d) = delete;
unique_ptr(pointer p, const A& d) noexcept; unique_ptr(pointer p, const A&& d) = delete;
D d; unique_ptr<int, D> p1(new int, D()); // D must be Cpp17MoveConstructible unique_ptr<int, D> p2(new int, d); // D must be Cpp17CopyConstructible unique_ptr<int, D&> p3(new int, d); // p3 holds a reference to d unique_ptr<int, const D&> p4(new int, D()); // error: rvalue deleter object combined // with reference deleter type— end example
unique_ptr(unique_ptr&& u) noexcept;
template<class U, class E> unique_ptr(unique_ptr<U, E>&& u) noexcept;
unique_ptr& operator=(unique_ptr&& u) noexcept;
template<class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;
unique_ptr& operator=(nullptr_t) noexcept;
add_lvalue_reference_t<T> operator*() const;
pointer operator->() const noexcept;
pointer get() const noexcept;
deleter_type& get_deleter() noexcept;
const deleter_type& get_deleter() const noexcept;
explicit operator bool() const noexcept;
pointer release() noexcept;
void reset(pointer p = pointer()) noexcept;
void swap(unique_ptr& u) noexcept;
namespace std {
template<class T, class D> class unique_ptr<T[], D> {
public:
using pointer = see below;
using element_type = T;
using deleter_type = D;
// [unique.ptr.runtime.ctor], constructors
constexpr unique_ptr() noexcept;
template<class U> explicit unique_ptr(U p) noexcept;
template<class U> unique_ptr(U p, see below d) noexcept;
template<class U> unique_ptr(U p, see below d) noexcept;
unique_ptr(unique_ptr&& u) noexcept;
template<class U, class E>
unique_ptr(unique_ptr<U, E>&& u) noexcept;
constexpr unique_ptr(nullptr_t) noexcept;
// destructor
~unique_ptr();
// assignment
unique_ptr& operator=(unique_ptr&& u) noexcept;
template<class U, class E>
unique_ptr& operator=(unique_ptr<U, E>&& u) noexcept;
unique_ptr& operator=(nullptr_t) noexcept;
// [unique.ptr.runtime.observers], observers
T& operator[](size_t i) const;
pointer get() const noexcept;
deleter_type& get_deleter() noexcept;
const deleter_type& get_deleter() const noexcept;
explicit operator bool() const noexcept;
// [unique.ptr.runtime.modifiers], modifiers
pointer release() noexcept;
template<class U> void reset(U p) noexcept;
void reset(nullptr_t = nullptr) noexcept;
void swap(unique_ptr& u) noexcept;
// disable copy from lvalue
unique_ptr(const unique_ptr&) = delete;
unique_ptr& operator=(const unique_ptr&) = delete;
};
}template<class U> explicit unique_ptr(U p) noexcept;
template<class U> unique_ptr(U p, see below d) noexcept;
template<class U> unique_ptr(U p, see below d) noexcept;
template<class U, class E> unique_ptr(unique_ptr<U, E>&& u) noexcept;
template<class U, class E> unique_ptr& operator=(unique_ptr<U, E>&& u)noexcept;
void reset(nullptr_t p = nullptr) noexcept;
template<class U> void reset(U p) noexcept;
template<class T, class... Args> unique_ptr<T> make_unique(Args&&... args);
template<class T> unique_ptr<T> make_unique(size_t n);
template<class T, class... Args> unspecified make_unique(Args&&...) = delete;
template<class T, class D> void swap(unique_ptr<T, D>& x, unique_ptr<T, D>& y) noexcept;
template<class T1, class D1, class T2, class D2>
bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template<class T1, class D1, class T2, class D2>
bool operator!=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template<class T1, class D1, class T2, class D2>
bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
common_type_t<typename unique_ptr<T1, D1>::pointer,
typename unique_ptr<T2, D2>::pointer>
Then the specialization
less<CT> shall be a
function object type that
induces a strict weak ordering on the pointer values.template<class T1, class D1, class T2, class D2>
bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template<class T1, class D1, class T2, class D2>
bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template<class T1, class D1, class T2, class D2>
bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y);
template<class T, class D>
bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept;
template<class T, class D>
bool operator==(nullptr_t, const unique_ptr<T, D>& x) noexcept;
template<class T, class D>
bool operator!=(const unique_ptr<T, D>& x, nullptr_t) noexcept;
template<class T, class D>
bool operator!=(nullptr_t, const unique_ptr<T, D>& x) noexcept;
template<class T, class D>
bool operator<(const unique_ptr<T, D>& x, nullptr_t);
template<class T, class D>
bool operator<(nullptr_t, const unique_ptr<T, D>& x);
less<unique_ptr<T, D>::pointer>()(x.get(), nullptr)The second function template returns
less<unique_ptr<T, D>::pointer>()(nullptr, x.get())
template<class T, class D>
bool operator>(const unique_ptr<T, D>& x, nullptr_t);
template<class T, class D>
bool operator>(nullptr_t, const unique_ptr<T, D>& x);
template<class T, class D>
bool operator<=(const unique_ptr<T, D>& x, nullptr_t);
template<class T, class D>
bool operator<=(nullptr_t, const unique_ptr<T, D>& x);
template<class T, class D>
bool operator>=(const unique_ptr<T, D>& x, nullptr_t);
template<class T, class D>
bool operator>=(nullptr_t, const unique_ptr<T, D>& x);
template<class E, class T, class Y, class D>
basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const unique_ptr<Y, D>& p);
namespace std {
class bad_weak_ptr : public exception {
public:
bad_weak_ptr() noexcept;
};
}bad_weak_ptr() noexcept;
namespace std {
template<class T> class weak_ptr {
public:
using element_type = remove_extent_t<T>;
// [util.smartptr.weak.const], constructors
constexpr weak_ptr() noexcept;
template<class Y>
weak_ptr(const shared_ptr<Y>& r) noexcept;
weak_ptr(const weak_ptr& r) noexcept;
template<class Y>
weak_ptr(const weak_ptr<Y>& r) noexcept;
weak_ptr(weak_ptr&& r) noexcept;
template<class Y>
weak_ptr(weak_ptr<Y>&& r) noexcept;
// [util.smartptr.weak.dest], destructor
~weak_ptr();
// [util.smartptr.weak.assign], assignment
weak_ptr& operator=(const weak_ptr& r) noexcept;
template<class Y>
weak_ptr& operator=(const weak_ptr<Y>& r) noexcept;
template<class Y>
weak_ptr& operator=(const shared_ptr<Y>& r) noexcept;
weak_ptr& operator=(weak_ptr&& r) noexcept;
template<class Y>
weak_ptr& operator=(weak_ptr<Y>&& r) noexcept;
// [util.smartptr.weak.mod], modifiers
void swap(weak_ptr& r) noexcept;
void reset() noexcept;
// [util.smartptr.weak.obs], observers
long use_count() const noexcept;
bool expired() const noexcept;
shared_ptr<T> lock() const noexcept;
template<class U>
bool owner_before(const shared_ptr<U>& b) const noexcept;
template<class U>
bool owner_before(const weak_ptr<U>& b) const noexcept;
};
template<class T>
weak_ptr(shared_ptr<T>) -> weak_ptr<T>;
// [util.smartptr.weak.spec], specialized algorithms
template<class T>
void swap(weak_ptr<T>& a, weak_ptr<T>& b) noexcept;
}constexpr weak_ptr() noexcept;
weak_ptr(const weak_ptr& r) noexcept;
template<class Y> weak_ptr(const weak_ptr<Y>& r) noexcept;
template<class Y> weak_ptr(const shared_ptr<Y>& r) noexcept;
weak_ptr(weak_ptr&& r) noexcept;
template<class Y> weak_ptr(weak_ptr<Y>&& r) noexcept;
~weak_ptr();
weak_ptr& operator=(const weak_ptr& r) noexcept;
template<class Y> weak_ptr& operator=(const weak_ptr<Y>& r) noexcept;
template<class Y> weak_ptr& operator=(const shared_ptr<Y>& r) noexcept;
weak_ptr& operator=(weak_ptr&& r) noexcept;
template<class Y> weak_ptr& operator=(weak_ptr<Y>&& r) noexcept;
long use_count() const noexcept;
bool expired() const noexcept;
shared_ptr<T> lock() const noexcept;
template<class U> bool owner_before(const shared_ptr<U>& b) const noexcept;
template<class U> bool owner_before(const weak_ptr<U>& b) const noexcept;
namespace std {
template<class T = void> struct owner_less;
template<class T> struct owner_less<shared_ptr<T>> {
bool operator()(const shared_ptr<T>&, const shared_ptr<T>&) const noexcept;
bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const noexcept;
bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const noexcept;
};
template<class T> struct owner_less<weak_ptr<T>> {
bool operator()(const weak_ptr<T>&, const weak_ptr<T>&) const noexcept;
bool operator()(const shared_ptr<T>&, const weak_ptr<T>&) const noexcept;
bool operator()(const weak_ptr<T>&, const shared_ptr<T>&) const noexcept;
};
template<> struct owner_less<void> {
template<class T, class U>
bool operator()(const shared_ptr<T>&, const shared_ptr<U>&) const noexcept;
template<class T, class U>
bool operator()(const shared_ptr<T>&, const weak_ptr<U>&) const noexcept;
template<class T, class U>
bool operator()(const weak_ptr<T>&, const shared_ptr<U>&) const noexcept;
template<class T, class U>
bool operator()(const weak_ptr<T>&, const weak_ptr<U>&) const noexcept;
using is_transparent = unspecified;
};
}
struct X: public enable_shared_from_this<X> { };
int main() {
shared_ptr<X> p(new X);
shared_ptr<X> q = p->shared_from_this();
assert(p == q);
assert(!p.owner_before(q) && !q.owner_before(p)); // p and q share ownership
} — end example
namespace std {
template<class T> class enable_shared_from_this {
protected:
constexpr enable_shared_from_this() noexcept;
enable_shared_from_this(const enable_shared_from_this&) noexcept;
enable_shared_from_this& operator=(const enable_shared_from_this&) noexcept;
~enable_shared_from_this();
public:
shared_ptr<T> shared_from_this();
shared_ptr<T const> shared_from_this() const;
weak_ptr<T> weak_from_this() noexcept;
weak_ptr<T const> weak_from_this() const noexcept;
private:
mutable weak_ptr<T> weak_this; // exposition only
};
}constexpr enable_shared_from_this() noexcept;
enable_shared_from_this(const enable_shared_from_this<T>&) noexcept;
enable_shared_from_this<T>& operator=(const enable_shared_from_this<T>&) noexcept;
shared_ptr<T> shared_from_this();
shared_ptr<T const> shared_from_this() const;
weak_ptr<T> weak_from_this() noexcept;
weak_ptr<T const> weak_from_this() const noexcept;
template<class T, class D> struct hash<unique_ptr<T, D>>;
template<class T> struct hash<shared_ptr<T>>;
namespace std {
template<class T> struct atomic<weak_ptr<T>> {
using value_type = weak_ptr<T>;
static constexpr bool is_always_lock_free = implementation-defined;
bool is_lock_free() const noexcept;
void store(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;
weak_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept;
operator weak_ptr<T>() const noexcept;
weak_ptr<T> exchange(weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;
bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order success, memory_order failure) noexcept;
bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order success, memory_order failure) noexcept;
bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;
bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;
constexpr atomic() noexcept = default;
atomic(weak_ptr<T> desired) noexcept;
atomic(const atomic&) = delete;
void operator=(const atomic&) = delete;
void operator=(weak_ptr<T> desired) noexcept;
private:
weak_ptr<T> p; // exposition only
};
}constexpr atomic() noexcept = default;
atomic(weak_ptr<T> desired) noexcept;
void store(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;
void operator=(weak_ptr<T> desired) noexcept;
weak_ptr<T> load(memory_order order = memory_order::seq_cst) const noexcept;
operator weak_ptr<T>() const noexcept;
weak_ptr<T> exchange(weak_ptr<T> desired, memory_order order = memory_order::seq_cst) noexcept;
bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order success, memory_order failure) noexcept;
bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order success, memory_order failure) noexcept;
bool compare_exchange_weak(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;
return compare_exchange_weak(expected, desired, order, fail_order);where fail_order is the same as order except that a value of memory_order::acq_rel shall be replaced by the value memory_order::acquire and a value of memory_order::release shall be replaced by the value memory_order::relaxed.
bool compare_exchange_strong(weak_ptr<T>& expected, weak_ptr<T> desired,
memory_order order = memory_order::seq_cst) noexcept;
return compare_exchange_strong(expected, desired, order, fail_order);where fail_order is the same as order except that a value of memory_order::acq_rel shall be replaced by the value memory_order::acquire and a value of memory_order::release shall be replaced by the value memory_order::relaxed.