int h;
void g();
namespace N {
struct A {};
template <class T> int f(T);
template <class T> int g(T);
template <class T> int h(T);
}
int x = f<N::A>(N::A()); // OK: lookup of f finds nothing, f treated as template name
int y = g<N::A>(N::A()); // OK: lookup of g finds a function, g treated as template name
int z = h<N::A>(N::A()); // error: h< does not begin a template-id
typedef int f;
namespace N {
struct A {
friend void f(A &);
operator int();
void g(A a) {
int i = f(a); // f is the typedef, not the friend function: equivalent to int(a)
}
};
}
Because the expression is not a function call, the argument-dependent
name lookup does not apply and the friend
function f is not found.
namespace A {
namespace N {
void f();
}
}
void A::N::f() {
i = 5;
// The following scopes are searched for a declaration of i:
// 1) outermost block scope of A::N::f, before the use of i
// 2) scope of namespace N
// 3) scope of namespace A
// 4) global scope, before the definition of A::N::f
} — end example
namespace M {
class B { };
}
namespace N {
class Y : public M::B {
class X {
int a[i];
};
};
}
// The following scopes are searched for a declaration of i:
// 1) scope of class N::Y::X, before the use of i
// 2) scope of class N::Y, before the definition of N::Y::X
// 3) scope of N::Y's base class M::B
// 4) scope of namespace N, before the definition of N::Y
// 5) global scope, before the definition of N
— end example
class B { };
namespace M {
namespace N {
class X : public B {
void f();
};
}
}
void M::N::X::f() {
i = 16;
}
// The following scopes are searched for a declaration of i:
// 1) outermost block scope of M::N::X::f, before the use of i
// 2) scope of class M::N::X
// 3) scope of M::N::X's base class B
// 4) scope of namespace M::N
// 5) scope of namespace M
// 6) global scope, before the definition of M::N::X::f
— end example
struct A {
typedef int AT;
void f1(AT);
void f2(float);
template <class T> void f3();
};
struct B {
typedef char AT;
typedef float BT;
friend void A::f1(AT); // parameter type is A::AT
friend void A::f2(BT); // parameter type is B::BT
friend void A::f3<AT>(); // template argument is B::AT
}; — end example
namespace N {
int i = 4;
extern int j;
}
int i = 2;
int N::j = i; // N::j == 4
— end example
namespace N {
struct S { };
void f(S);
}
void g() {
N::S s;
f(s); // OK: calls N::f
(f)(s); // error: N::f not considered; parentheses prevent argument-dependent lookup
} — end example
namespace NS {
class T { };
void f(T);
void g(T, int);
}
NS::T parm;
void g(NS::T, float);
int main() {
f(parm); // OK: calls NS::f
extern void g(NS::T, float);
g(parm, 1); // OK: calls g(NS::T, float)
} — end example
class A {
public:
static int n;
};
int main() {
int A;
A::n = 42; // OK
A b; // ill-formed: A does not name a type
} — end example
class X { };
class C {
class X { };
static const int number = 50;
static X arr[number];
};
X C::arr[number]; // ill-formed:
// equivalent to ::X C::arr[C::number];
// and not to C::X C::arr[C::number];
— end examplenested-name-specifier class-name :: ~ class-namethe second class-name is looked up in the same scope as the first.
struct C {
typedef int I;
};
typedef int I1, I2;
extern int* p;
extern int* q;
p->C::I::~I(); // I is looked up in the scope of C
q->I1::~I2(); // I2 is looked up in the scope of the postfix-expression
struct A {
~A();
};
typedef A AB;
int main() {
AB* p;
p->AB::~AB(); // explicitly calls the destructor for A
} — end example
struct A { A(); };
struct B: public A { B(); };
A::A() { }
B::B() { }
B::A ba; // object of type A
A::A a; // error, A::A is not a type name
struct A::A a2; // object of type A
— end example
int x;
namespace Y {
void f(float);
void h(int);
}
namespace Z {
void h(double);
}
namespace A {
using namespace Y;
void f(int);
void g(int);
int i;
}
namespace B {
using namespace Z;
void f(char);
int i;
}
namespace AB {
using namespace A;
using namespace B;
void g();
}
void h()
{
AB::g(); // g is declared directly in AB, therefore S is { AB::g() } and AB::g() is chosen
AB::f(1); // f is not declared directly in AB so the rules are applied recursively to A and B;
// namespace Y is not searched and Y::f(float) is not considered;
// S is and overload resolution chooses A::f(int)
AB::f('c'); // as above but resolution chooses B::f(char)
AB::x++; // x is not declared directly in AB, and is not declared in A or B, so the rules
// are applied recursively to Y and Z, S is { } so the program is ill-formed
AB::i++; // i is not declared directly in AB so the rules are applied recursively to A and B,
// S is so the use is ambiguous and the program is ill-formed
AB::h(16.8); // h is not declared directly in AB and not declared directly in A or B so the rules
// are applied recursively to Y and Z, S is and
// overload resolution chooses Z::h(double)
} — end example
namespace A {
int a;
}
namespace B {
using namespace A;
}
namespace C {
using namespace A;
}
namespace BC {
using namespace B;
using namespace C;
}
void f()
{
BC::a++; // OK: S is
}
namespace D {
using A::a;
}
namespace BD {
using namespace B;
using namespace D;
}
void g()
{
BD::a++; // OK: S is
} — end example
namespace B {
int b;
}
namespace A {
using namespace B;
int a;
}
namespace B {
using namespace A;
}
void f()
{
A::a++; // OK: a declared directly in A, S is { A::a }
B::a++; // OK: both A and B searched (once), S is { A::a }
A::b++; // OK: both A and B searched (once), S is { B::b }
B::b++; // OK: b declared directly in B, S is { B::b }
}
namespace A {
struct x { };
int x;
int y;
}
namespace B {
struct y { };
}
namespace C {
using namespace A;
using namespace B;
int i = C::x; // OK, A::x (of type int)
int j = C::y; // ambiguous, A::y or B::y
} — end examplenested-name-specifier unqualified-idthe unqualified-id shall name a member of the namespace designated by the nested-name-specifier or of an element of the inline namespace set of that namespace.
namespace A {
namespace B {
void f1(int);
}
using namespace B;
}
void A::f1(int){ } // ill-formed, f1 is not a member of A
— end example
namespace A {
namespace B {
void f1(int);
}
}
namespace C {
namespace D {
void f1(int);
}
}
using namespace A;
using namespace C::D;
void B::f1(int){ } // OK, defines A::B::f1(int)
— end exampleclass-key attribute-specifier-seq identifier ;the identifier is looked up according to [basic.lookup.unqual] but ignoring any non-type names that have been declared.
class-key attribute-specifier-seq identifier ;the elaborated-type-specifier is a declaration that introduces the class-name as described in [basic.scope.pdecl].
struct Node {
struct Node* Next; // OK: Refers to Node at global scope
struct Data* Data; // OK: Declares type Data at global scope and member Data
};
struct Data {
struct Node* Node; // OK: Refers to Node at global scope
friend struct ::Glob; // error: Glob is not declared, cannot introduce a qualified type ([dcl.type.elab])
friend struct Glob; // OK: Refers to (as yet) undeclared Glob at global scope.
/* ... */
};
struct Base {
struct Data; // OK: Declares nested Data
struct ::Data* thatData; // OK: Refers to ::Data
struct Base::Data* thisData; // OK: Refers to nested Data
friend class ::Data; // OK: global Data is a friend
friend class Data; // OK: nested Data is a friend
struct Data { /* ... */ }; // Defines nested Data
};
struct Data; // OK: Redeclares Data at global scope
struct ::Data; // error: cannot introduce a qualified type ([dcl.type.elab])
struct Base::Data; // error: cannot introduce a qualified type ([dcl.type.elab])
struct Base::Datum; // error: Datum undefined
struct Base::Data* pBase; // OK: refers to nested Data
— end example
struct A { };
struct B {
struct A { };
void f(::A* a);
};
void B::f(::A* a) {
a->~A(); // OK: lookup in *a finds the injected-class-name
} — end example
class-name-or-namespace-name::...
the class-name-or-namespace-name following the . or
-> operator is
first looked up in the class of the object expression and the name, if found,
is used.
::class-name-or-namespace-name::...
the class-name-or-namespace-name is looked up in global scope
as a class-name or namespace-name.
struct A { };
namespace N {
struct A {
void g() { }
template <class T> operator T();
};
}
int main() {
N::A a;
a.operator A(); // calls N::A::operator N::A
} — end example